Customized OAI-ORE and OAI-PMH Exports of
Compound Objects for the Fedora Repository

Alessia Bardi'2, Sandro La Bruzzo!, and Paolo Manghi'

! Consiglio Nazionale delle Ricerche
Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”
name.surname@isti.cnr.it
2 Dipartimento di Ingegneria dell’Informazione, Universita di Pisa
alessia.bardi@for.unipi.it

Abstract. Modern Digital Library Systems (DLSs) are based on docu-
ment models which surpass the traditional payload-metadata document
model to incorporate further entities involved in the research life-cycle.
Such DLSs manage graphs of interconnected objects, hence offer tools for
the creation, visualization and exports of such graphs. In particular, ob-
jects in the graph are exported via standard OAI-ORE and OAI-PMH pro-
tocols, encoded as (XML) “packages of interlinked information objects”,
also known as compound objects. Fedora is a well-known repository plat-
form, designed to support the realization of DLSs implementing modern
document models. To date, Fedora does not provide tools to customize
compound object exports from DLS object graphs. This paper presents
Fedora-OAlzer, an extension of Fedora which allows DLS developers to
customize the structure of compound objects to be exported from a given
DLS document model — expressed in terms of Fedora Content Models —
and to select the OAI protocol of preference. In order to prove the com-
pleteness of the approach, Fedora-OAlzer is compared to other solutions
for exporting compound objects from Fedora repositories.

1 Introduction

In the past, Digital Library Systems (DLSs) adopted “traditional” document
models representing collections of payloads of digitized or born-digital material
(e.g., publications, multimedia files) and their digital descriptions (i.e., metadata
records). “Modern” document models enhance the traditional document model
to incorporate further entities involved in the research life-cycle and semantic
relationships. Consequently, modern DLSs manage graphs of interconnected in-
formation objects, called object graph, rather then flat collections of objects. For
example, a “traditional” publication-metadata document model can be enriched
with further contextual information, such as the used and generated research data.

The complexity of modern document models introduces a number of chal-
lenges concerning the way graphs of information objects are displayed, encoded,
and exported across different DLSs. In particular, sub-parts of the object graph
are exported, rather than each single information object or the object graph in
its whole, in order to disseminate a package containing semantically related infor-
mation objects. Such packages, called compound objects, are usually encoded in

XML or other machine-readable formats and exported via standard protocols. The
most used standard protocols are promoted by the Open Archives Initiative [6]:
the OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) [4]
and OAI-ORE (Open Archives Initiative Object Reuse and Exchange) [5].

The Fedora Repository [3] is a well-known platform supporting the realization
of DLS. Its data model is designed to represent modern DLS document models
thanks to its graph-oriented primitives. At the time of writing, Fedora features
a non-customizable OAI-PMH publisher! which exports only Dublin Core meta-
data records. An additional module supports the OAI-PMH exports of datas-
treams with different XML formats. Two plugins for OAI-ORE export are also
available online: oreprovider? and Fedora20RE?. Both plugins do not allow to
fully customize the structure of the exported compound object.

This paper presents Fedora-OAlzer, an extension of Fedora for the export of
compound objects conforming to a given portion of the underlying DLS document
model through the OAI-PMH or OAI-ORE protocols. Fedora-OAlzer implements
a mechanism based on the concept of “OAI view” of a Fedora document model.
An OALI view is the sub-structure of the document model that developers select to
customize the shape of the compound objects to export. OAlzer interprets OAI
views to automatically deploy web APIs capable of exporting compound objects
compatible with the given structure and according to the preferred OAI protocol.

Outline Section 2 introduces basic concepts and defines the addressed problem.
Section 3 describes the Fedora repository platform and the available tools for
exporting compound objects via OAI-PMH and OAI-ORE. Section 4 presents
Fedora-OAlzer and its approach that enables developers to customize compound
objects by selecting sub-parts of the document model at hand. We conclude and
compare Fedora-OAlzer to other existing solutions in Section 5.

2 Document models, Digital Library Systems and
compound objects

A Digital Library System (DLS) [2] is a DL-oriented software serving a particular
DL community. A DLS offers functionalities for the management, access and dis-
semination of graphs of information objects whose structure is defined by a data
model called document model. A document model is a formal definition of types
of entities and relationships that a Digital Library (DL) wants to manage. An
entity type typically describes properties of objects in terms of name, cardinality
and value type. A relationship type usually include a semantic label expressing
the nature of the association and the types of entities allowed as sources and tar-
gets of the relationship. Figure 1 shows a document model defining three types
of entities (Article, PDF, and Data) and the available relationships (HAS_PDF,
USES, USED_BY, GENERATES, GENERATED _BY).

! Basic OAI-PMH Provider, https://wiki.duraspace.org/display/FEDORA36/
Basic+0AI-PMH+Provider
oreprovider Fedora module, http://oreprovider.sourceforge.net/
3 Fedora20RE, http://trac.ecodr.org/trac/ecodr/wiki/Fedora20RE

2

_POF O

. ~ uses
HAS_PDF)
Article CENERATES Data
~—— USED_BY
A

GENERATED_BY

Fig. 1. A modern document model: articles linked with research data

For example, a DLS adopting the document model in fig.1, manages graphs
of information objects as that in Fig. 2.

“opr, P ~ O\ GENERATED_BY —
<< PDF2 /Anz USES W Am\
USEDBY ~ has por | GENERATES
NN
PDF2)
(_PoF2)

Fig. 2. An example of object graph

To clarify, it is possible to compare the above concepts with similar concepts in
the relational database world. An entity-relationship model in the database world
corresponds to a DLS document model. DLSs are comparable to applications
realized on top of Relational Data Base Management Systems.

Since DLSs manage graphs of information objects, it is important to define
the granularity of the data to export. Indeed, exporting each single information
object separately (for example, exporting Artl of Fig. 2 without the generated
data) leads to a loss of contextual information. Related information objects should
be packaged and exported together as a single compound object, capable of main-
taining all semantic relationships involving the packaged objects.

In order to exchange and re-use compound objects, interoperability issues must
be tackled. The Open Archives Initiative [6] defines two standard protocols for
data interoperability and information reuse: OAI-PMH Open Archives Initiative
Protocol for Metadata Harvesting [4] and OAI-ORE Open Archives Initiative
Object Reuse and Exchange [5]. Both protocols allow to export compound objects
of a DLS, but they adopt two radically different approaches. OAI-PMH is meant
for the export of the descriptive metadata in the form of XML files; OAI-ORE
is meant for the export of web-interpretable RDF representations of so-called
aggregations, which are special web resources encoding compound objects.

OAI-PMH provides an application-independent interoperability framework based
on metadata harvesting. Its data model has four main elements:

— Resource: an object described by one or more metadata records.

— Metadata record: XML data describing a resource. Each metadata record has
its metadata format, often referred to as the XML Schema.

— Item: container of metadata records describing one resource. Each item must
have at least one Dublin Core metadata record.

— Set: optional element used to group items.

In order to export via OAI-PMH, DLSs set up an OAI-PMH publisher capable
of exporting a set of XML files encoding compound objects. Well-known metadata
formats that can be adopted are METS[9] and XML-DIDLIS].

OAI-ORFE defines standards for the description and exchange of Web resources
called aggregations. An aggregation is a Web resource with its own identity and
it represents a group of related Web resources.

The OAI-ORE protocol does not define an exchange protocol, but only a data
model, while suggesting exchange formats such as XML/RDF and ATOM feeds.
The OAI-ORE model captures four type of resources:

— Aggregation: resource that groups other resources, called aggregated resources.
— Aggregated resource: resource that belongs to an aggregation, that is the ORE
representation of an information object in a compound object.
— Resource map: serializable description of an aggregation. A resource map:
e lists the aggregated resources;
e has properties about the aggregation and its aggregated resources, e.g.,
relationships among aggregated and other external resources.
— Proxy: resource that allows to assert relationships among aggregated resources
in the context of one specific aggregation.

Among the functionalities offered by a DLS, we usually find support for data
exchange according to the OAI standard protocols. However most DLSs do not
provide means to customize the structure of the compound objects, but they
rather fix statically the mapping between the document model and the OAI-PMH
and OAI-ORE data models.

3 Fedora and exports of compound objects

Fedora (Flexible Extensible Digital Object Repository Architecture) is a well-
known repository platform, designed to support the realization of DLSs. Its data
model supports the representation of labelled graphs of information objects. Fe-
dora manages objects of different kinds. “Fedora Data Objects” (FDOs) represent
information objects. A FDO is composed by the following parts: an XML Dublin
Core metadata record, a list of local or remote files called “datastreams”, and
a list of relationships to other FDOs. The latter are serialized as RDF/XML[7]
into a special datastream called RELS-EXT. “Fedora Content Models” (FCMs)
are special objects devised for the definition of a document model in a Fedora in-
stance. FCMs define constraints on the structure of FDOs, declaring which are the
mandatory datastreams, relationships and operations (i.e., Web Service methods)
of the FDOs compliant to that FCM. Figure 3 shows how the document model in
Fig. 1 can be represented in terms of FCMs. CM_article is the content model for
the class article and defines one mandatory datastream called ART of mime type
PDF. CM_data is the content model for the class data and defines two manda-
tory datastreams: one for binary content called DATA, the other for the XML

Listing 1.1. Excerpt from the FCM for the Article class: the ONTOLOGY datastream
1 <!-- ONTOLOGY datastream for allowed relationships -->
2 <foxml:datastream CONTROL_GROUP="X" ID="ONTOLOGY" STATE="A" VERSIONABLE="true">

3 .
<rdf :RDF>

4

5 <owl:Class rdf:about="ns:CM_article">

6 <!-- Objects of this class can have the following relations -->

7 <owl:0ObjectProperty rdf:about="uses"/>

8 <owl:0ObjectProperty rdf:about="generates"/>

9 <!--Both relations must have objects compliant to the CM_data content model
as targets. -->

10 <rdfs:subClass0f><owl:Restriction>

11 <owl:onProperty rdf:resource="#uses"/>

12 <owl:allValuesFrom

13 rdf :resource="ns:CM_data"/>

14 </owl:Restriction></rdfs:subClass0f>

15 <rdfs:subClass0f><owl:Restriction>

16 <owl:onProperty rdf:resource="#generates"/>

17 <owl:allValuesFrom

18 rdf :resource="ns:CM_data"/>

19 </owl:Restriction></rdfs:subClass0f>

20 </owl:Class>

21 </rdf :RDF>

22 .

description of the data in DDI format[1]. By default, Fedora also includes one
mandatory XML datastream called DC for metadata in Dublin Core format. The
arrows between the two models represent the available semantic relationships as
they are declared in the ONTOLOGY datastream of both content models. Listing
1.1 is an excerpt of the ONTOLOGY datastream for CM_article.

USES
CM_article CM_data

USED_BY

ds: DATA, binary
ds: DC, XML Document model:
ds: DDI, XML implementation with

\Cg‘lERATEDﬁB x Fedora Content Models

ds: ART, PDF
ds: DC, XML GENERATES

hasModel hasModel hasModel Fedora instance:
. N\ graphs of
dsDC Fedora Data Objects
ds:ART GENERATE:!
ds:DC ceneratED BY ¥ ds:DATA
ds:ART (52 uses — 5 Datat ds:DC
USED_BY ds:DDI

Fig. 3. Fedora content models and data objects example

3.1 Fedora and OAI

The Fedora data model is an expressive data model because its primitives allow
to represent graph of information objects without imposing pre-defined structural
or semantic constraints. Nevertheless, boundaries of compound objects are fixed,
because Fedora’s concept of compound object is that of an aggregation of datas-
treams. This means that in Fedora the notion of compound object matches the

definition of a Fedora Object. Given the instance in Fig. 3, each of Art1, Art2 and
Datal are considered by the system as distinct compound objects. Considering a
set of interconnected Fedora Objects as one compound object is not possible in
Fedora without the realization of a new logic layer on top of it.

The rest of this section describes four existing solutions for the export of
compound objects from a Fedora instance.

OAI-PMH Providers Basic OAI-PMH Provider? is the built-in OAI-PMH provider
for Fedora. It exports the mandatory DC datastream of each FDO. For the export
of datastreams with other metadata formats, then the additional OAI Provider
Service® module is required. OAI Provider Service supports any metadata format
available through datastreams and interprets relationships with a given name to
set up OAI Sets. Both tools provide a static mapping from the Fedora data model
to the PMH data model. A FDO is mapped into an OAl-item, XML datastreams
are mapped into metadata records.

OAI-ORE Providers OREprovider® enables the export of FDOs as OAI-ORE
aggregations with an object-oriented approach. It implements a static mapping
from the Fedora data model and the OAI-ORE data model. Datastreams are
mapped into ORE aggregated resource. For the generation of ORE aggregations
there are two modes available. In “annotation mode” FDOs must be annotated
with relationships that assert the identifier of the target ORE aggregation and
the datastreams to be mapped into aggregated resources. In “auto-creation” mode
each FDO is mapped into one ORE Aggregation, whilst each of its datastreams
is mapped into one aggregated resource. In “autocreation mode” the tool is easy
to use and no alteration has to be done to an existing repository. However, if a
DLS developer wants to have control over the exported objects, FDOs must be
appositely annotated, hence the document model must be aware of the special
relationships exploited by OREprovider. Furthermore, the static mapping does
not include the concept of ORE proxy and the tool does not provide any support
for the modelling of relationships among aggregated resources.

The Fedora20RE" tool adopts a navigation-oriented approach for the export of
FDOs as OAI-ORE aggregations. ORE aggregations consist of one FDO together
with the objects reachable by navigating its relationships up to a given depth.
Fedora20RE traverses the object graph starting from an object with a given
identifier according to a variant of the breadth first search. A resource map is
created to represent the visited sub-graph. The behaviour of the traversal can
be customized by statically specifying in a configuration file which relationships,
datastreams, FDOs are to be ignored. Each node of the resulting sub graph is an
Aggregated Resource. Fedora20RE is independent from DLS applications because
there is no need to define special relationships as for OREprovider. It generates
aggregations by following relationships between objects, but DLS developers can
only define the boundaries of aggregations in terms of navigation depth rather

4 https://wiki.duraspace.org/display/FEDORA35/Basic+0AI-PMH+Provider

® https://wiki.duraspace.org/display/FCSVCS/0AI+Provider+Service+1.2.2
5 http://oreprovider.sourceforge.net/index.html

" http://trac.ecodr.org/trac/ecodr/wiki/Fedora20RE

than in terms of their preferred document model sub-structure. Furthermore,
relationships among FDOs are not mapped into the OAI-ORE model, hence most
of the semantics of the compound object is lost.

4 Fedora-OAlzer

Fedora-OAlzer is an extension for Fedora that allows to customize exports of
compound objects via OAI-ORE and OAI-PMH protocols. As shown in Fig. 4,
Fedora-OAlzer realizes a new layer on top of Fedora, capable of dynamically
deploying OAI-PMH or ORE-ORE interfaces.

Fedora-OAlzer exploits the information about the Fedora Content Models to
construct a representation of the document model of the DLS. We denote such a
representation as entity graph. DLS developers can choose granularity, shape and
properties of the compound objects to export by selecting interesting nodes and
edges from the entity graph. Since the entity graph is a representation of a Fedora
document model, the selected parts are a sub-structure of the document model.
That sub-structure is called OAI view of a Fedora document model. The OAI
view corresponds to the structure of the compound objects to export. OAlzer in-
terprets OAI views to automatically setup OAI-ORE and OAI-PMH repositories.
Repositories are here intended as ORE or PMH APIs available at a given URL,
dynamically generated after an OAI view interpretation.

OAlzer exploits the built-in capabilities of Fedora, namely the REST APIs
and the triple store, hence it is possible to plug Fedora-OAlzer in any standard
Fedora instance.

OAlzer

View

Interpreter
OAI-ORE
‘ exporter I
OAI-PMH

publisher

B

DLS
document . FEDORA

model

implementation /Graphs of
Content Models | compliant to

Entity Graph

represents

)
Graphs of
Data Objects

Fig. 4. View mechanism and OAI tools

4.1 Generation of the entity graph

When a DLS is based on Fedora, then developers define the document model
in terms of Fedora Content Models (FCMs). Figure 5 shows an example of en-
tity graph representing the document model of Fig.3: nodes represent classes of
information objects, that is Fedora Content Models. Nodes are annotated with

information about datastreams. Edges represent allowed relationships between
objects of the connected classes.

name:

CM_article name:
- CM_data

ds:DC ds:DATA
ds:ART GENERATES ds:DC
ds:DDI

USED_BY

GENERATED_BY

Fig. 5. An example of entity graph

Fedora-OAlzer generates the entity graph by performing the following macro
steps:

1. Creation of one node of the entity graph for each FCM in the Fedora instance.
The list of existing FCMs can be obtained by querying the triple store 2.

2. Obtain the full XML representation of each FCM using the REST API®.
Information in that file is used in the next steps.

3. Enrichment of nodes with properties. Properties of a node reflect the decla-
rations of datastreams in the corresponding content model. Such information
is extracted from the standard XML datastream named DS-COMPOSITE-
MODEL.

4. Generation of edges. If the FCM declares a relationship to another content
model, then an edge is created between the nodes corresponding to the content
models involved in the relation. The edge is labelled with the name of the
relationship as it is declared in the ONTOLOGY datastream (see Listing
1.1).

4.2 Definition of the view

OAlzer provides a graphical user interface where DLS developers can see the gen-
erated entity graph and define their OAI view, that is the shape of the compound
objects to export by choosing the interesting nodes, properties, and edges.

The DLS developer first chooses the root node of the OAI view. The view
interpreter navigates the Fedora object graph starting from every object compliant
to the content model represented by the root node. After the selection of the root,
the DLS developer performs iteratively the following steps until the OAI view is
completed according to requirements:

8 select 7o from <#ri> where
70 <fedora-model:hasModel>
<info:fedora/fedora-system:ContentModel-3.0>
9 http://<fedoraServer>/objects/<id>/objectXML

— select one or more properties of the current node. The property names match
the names of the corresponding Fedora datastreams: by selecting a property,
the developer includes the corresponding datastream in the ORE resource
relative to the current node.

— select one or more edges from the forward star of the current node. Each edge
is labelled with the name of the corresponding Fedora relationship. If the DLS
developer selects an edge, the target node is also included in the OAI view
and an ORE relation is added between the ORE resources corresponding to
the current and the target node.

The OAI view is eventually serialized into a formal language for the view
interpreter.

Figure 6 shows a possible OAI view defined over the entity graph in Fig. 5.
Compound objects are rooted in the class CM_article and include the DC datas-
tream of the article, the DC and DDI datastreams of the research data objects
reachable through relationships labelled with USES, and the DC datastream of
articles reachable from those research data objects via relationships labelled GEN-
ERATED_BY.

name: name: name:

CM_article CM_data ds:DC ds:DDI CM_article
ds:DC C USES & GENERATED_BY ‘ ds:DC

Fig. 6. An example of OAI view

4.3 Interpretation of the view

The View Interpreter is the component of OAlzer that deploys OAI-PMH and
OAI-ORE APIs for the dissemination of compound objects whose structure is
defined by an OAI view. The OAI view defines a “root” content model: each
object compliant to the root content model is the entry point for an instance
of the OAI view. An instance of the view is a sub-graph of the object graph. It
includes all objects and relationships of one compound object.

The interpreter performs a visit on the FDO’s graph for each entry point in
order to get all FDOs that form an instance of the view. Moreover, the interpreter
processes the FDOs of the view instance to keep track of the semantic relationships
between them.

Figure 7 shows two instances of the view in Fig. 6 over the Fedora instance in
Fig. 3.

For the customization of an OAI-PMH publisher, the interpreter maps the view
into an OAI-PMH Set. Each instance of the view is mapped into an OAI-PMH
Item with at least two metadata formats: OAlzer-XML and DC. OAlzer-XML
is an idiosyncratic format for the representation of compound objects. OAlzer
provides a default mapping from OAlzer-XML to DC in order to generate the DC

ID: Art2 ID: Datal »ds:DC ID:Art1

USES GENERATED_BY,

Fig. 7. Instances of the OAI view

C e It Set View It
USES Data ds:DC; bt e H em em
A2 ——> ; ; - -
1 < ds:DDIi OAlzer XML -> MF1 i| Instance_View_1 Instance_View_2
1 i ' i
deiDC GENERATED_BY . DC
OAI-PMH - OAIZER-XML T DAZERL
ds:DC +—o At ‘ View . «_MF1
Interpreter

Fig. 8. Examples of OAI-PMH exports

records and be fully compliant to the OAI-PMH protocol. More metadata formats
can be added by providing customized XSLT transformations from OAlzer-XML
to the target metadata formats (see fig.8).

For the customization of the OAI-ORE exporter, the interpreter creates for
each instance of the view one ORE aggregation together with its correspond-
ing resource map. For each FDO of the instance, an aggregated resource and an
associated proxy are created. The aggregated resource is the OAlzer-XML rep-
resentation of the FDO, including the datastreams selected in the view. Finally,
the interpreter processes the FDOs of the view instance to add semantic relation-
ships between aggregated resources. At this aim, the interpreter exploits the ORE
proxy entities. The interpreter connects two proxies with a relationship r if the
Fedora triple store contains the triple: fdol r fdo2 where fdol and £do2 are the
identifiers of the FDOs corresponding to the ORE proxies (see Fig. 9)

N Aggregation Aggregated resource . Proxy -> ore:aggregates relation
USES Data ds:DC :
A2 ———> 1 |
ds:DDI;
i GENERATED_BY , s, - (Agar)~ .
ds:DC ¢ Y ./% - {Q‘Oﬁ >\. \\\
,/ proxyln | / \ \
. PR, H \
ds:DC Artl ; J GENERATED_BY‘Q)‘ USES & \
i ! — " & \
; Proxyro, | 5\ Q@"‘ \ \\.
v v Y }
http://<server>/oaizer/ proxyror A http://<server>/oaizer/
- Art1/OAIZER-XML N Y oAy
OAI-ORE View : ;
http://<server>/oaizer/
Interpreter Data1/OAIZER-XML

Fig. 9. Examples of OAI-ORE Aggregations

5 Conclusion

We discussed how the evolution of today’s Digital Library Systems (DLSs) and
the complexity of document models to represent led to data interoperability chal-

lenges. We addressed issues regarding the exchange of compound objects, i.e.,
packages of interlinked information objects with their own identity, among differ-
ent DLSs via the standard protocols OAI-ORE and OAI-PMH.

We presented Fedora-OAlzer, a tool for the customization of OAI-PMH and
OAI-ORE exports of compound object from Fedora repositories. Fedora-OAlzer
creates a layer on top of Fedora in order to allow DLS developers to select the
shape and boundaries of the compound objects to export. Fedora-OAlzer analyses
a Fedora instance and infers the document model at hand from the Fedora con-
tent models. The document model is represented as an entity graph from which
developers can select a subset of nodes and edges to define the OAI view. The OAT
view defines the structure of the compound objects to export. Fedora-OAlzer then
interprets the OAI view and, on demand, deploys OAI-ORE and OAI-PMH APIs
delivering compound objects whose structure complies with the view definition.

Figure 10 summarizes the comparison among Fedora-OAlzer and the other
existing solutions for OAI-PMH and OAI-ORE exports we described in Sect. 3.1.

Basic OAI-PMH OAI Provider OREProvider Fedora2ORE
Provider
YES NO NO NO

Fedora Built-in NO
Supported PMH - ORE PMH PMH ORE ORE
Protocols
PMH Item OAl View FDO FDO n.a n.a
Instance
PMH-Metadata Generated from Datastream Datastream n.a n.a
Records OAl View
Instance
PMH Metadata DC, DC any format n.a n.a
Format OAlzer-XML existing
datastream
ORE Aggregation OAl view n.a n.a definded by subgraph visited
instance annotation starting from a
given FDO
ORE Aggregated FDOs in the OAI n.a n.a datastreams with FDOs in the
Resources view instance a given name visited subgraph
ORE Proxy FDOs in the OAI n.a n.a not supported not supported
view instance
Relationships YES n.a n.a NO NO
between
Aggregated
Resources
Compound object OAl view FDO FDO FDOs annotated navigation depth
boundaries (properties and with the same tag
navigational
criteria)

Fig. 10. Comparing Fedora-OAlzer to other OAI solutions for Fedora

6 Acknowledgements

This work is partly funded by the European Commission as part of the projects
OpenAIRE (FP7-INFRASTRUCTURES-2009-1, Grant Agreement no. 246686)
and OpenAIREplus (FP7-INFRA-2011-2, Grant Agreement no. 283595).

References

—_

D. D. I. Alliance. Data Documentation Initiative. http://www.ddialliance.org/.
L. Candela, D. Castelli, P. Pagano, C. Thanos, Y. E. Ioannidis, G. Koutrika, S. Ross,
H.-J. Schek, and H. Schuldt. Setting the foundations of digital libraries: The delos
manifesto. D-Lib Magazine, 13(3/4), 2007.

C. Lagoze, S. Payette, E. Shin, and C. Wilper. Fedora: An Architecture for Com-
plex Objects and their Relationships. Journal of Digital Libraries, Special Issue on
Complex Objects, 2005.

. C. Lagoze and H. Van de Sompel. The OAI Protocol for Metadata Harvesting.

http://www.openarchives.org/0AI/openarchivesprotocol.html.

C. Lagoze and H. Van de Sompel. The OAI Protocol for Object Reuse and Exchange.
http://www.openarchives.org/ore/.

C. Lagoze and H. Van de Sompel. The open archives initiative: building a low-
barrier interoperability framework. In Proceedings of the first ACM/IEEE-CS Joint
Conference on Digital Libraries, pages 54—62. ACM Press, 2001.

F. Manola and E. Miller. RDF primer. Technical report, W3C Recommendation,
2004. http://www.w3.org/TR/rdf-primer/.

MPEG-21, Information Technology, Multimedia Framework. Part 2: Digital Item
Declaration. Technical report, ISO/IEC 21000-2:2003, 2003.

The Library of Congress. Metadata Encoding and Transmission Standard. http:
//www.loc.gov/standards/mets/, February 2002.

